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L INTRODUCTION 

The planets of the solar system, until 1954, had been con- 

sidered comparatively uninteresting objects, visible only by reflected 

sunlight or thermal emission due to solar heating. The thermal emission 

is greatest in the infrared region and follows the Rayleigh-Jeans 

radiation law in the microwave region. It was to be expected that large 

antennas and sensitive receivers operating at microwave frequencies 

could detect this thermal emission, and this eventually proved to be the 

case. 1,2,3 

Prior to this, however, the accidental discovery in 1954 by 

4 Burke and Franklin of intense bursts of radiation from Jupiter at 

22 Mc/s stimulated the whole science of planetary radio astronomy. 

The detection of radiation in the decameter region rather than the micro- 

wave region was totally unexpected and indicated that at least one planet 

had an energy source whose interaction with the sun, if any, was not 

immediately obvious. 

5 This discovery was soon confirmed by Shain, who also intro- 

duced an important method of analysis of the Jupiter radiation. Shain's 

work is shown in Fig. 1 applied to Jupiter noise storms found on records 

of galactic noise made in 1951. Fig. l a  shows a recurrence tendency 

1 
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* 
for the radiation in System II longitude. The gradual shift to  lower 

longitudes indicates that the period of the recurrence tendency is very 

slightly less than the System II rotation period. The histogram in Fig. 

l b  is a superposition of the activity periods in Fig. la. Such histograms 

of later observations using System II longitude permit precise statistical 

determinations6' of the drift rate, and hence the rotation period, of 

the radio sources. 

System IIl (1957.0) longitudes now in common use. 

This radio rotation rate forms the basis of the 

-+ 
Continued observations have di8 closed that the decameter 

radiation is quite complex. Only two of the proposed theories have 

gained notable support. A successful theory must explain the following 

characteristics of the decameter radiation: 

1. The intensity of the radiation is greater than that of any cosmic 
radio source and often rivals that of the disturbed sun. 

*Visual features in  the Jovian atmosphere exhibit differential 
rotation with well-defined periods. 
vations of Jupiter use two average central meridian longitude systems, 
denoted by System I and System II, corresponding to rotation periods of 
9h50m30, '004 and 9 h m  55 40. '632 respectively. 

Ephemerides for physical obser- 

+The International Astronomic% Union in 1962 defined System 
III central meridian longitudes (+11) as: 

Epoch 1957.0 Julian Date 2435839.5 

h m  Radio System III h 9 55 29.'37 III(1957.0) 
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2. The radiation is sporadic and, when it occurs,consists of a 
series of bursts known as an event,* which may last for several minutes 
to several hours. 
some ten seconds or longer in duration. 
I-pulses, 
less. 

Individual bursts range from about half a second to 
Very short signals known as 

or 'spitting pulses', lo have durations of fifty milliseconds or  

3. Noise storms have been observed a t  frequencies between 4.8 
and 38.5 Mc/s, 11* l2 although they occur most often below 20 Mc/s. 

4. Above 20 Mc/s the radiation is almost exclusively polarized in 
the right-handed sense. 
polarization becomes significantly larger. 

Below 20 Mc/s  the proportion of left-handed 

5. The more important features of the occurrence probability 
histograms persist from year to yea r3  
that the radio rotation period is lengthening slightly. 

Recent observations indicate 
14 

Early Jupiter observations concentrated on gathering a large 

amount of data to obtain a statistically good mlue for the radio rotation 

period and on studying the histograms of frequency of occurence versus 

*At a conference of Jupiter observers at NASA Goddard Space 
Flight Center in.Apri1, 1965, the following definitions were tentatively 
agreed upon: 13 

1. An event is a signal identified to be of Jovian origin whose 
e r m s  system noise 
U, T. 

amplitude is equal to or greater than three times 
in any given five minute interval measured from 0 9 

2. A buret is a signal variation of Jovian origin of amplitude 
equal to  or greater than three times the rms noise on a time scale of 
one second or longer, 

An event therefore consists of a number of bursts. 

'The NASA Jupiter conference at Goddard Space Flight Center 
in 1965 divided the System III longitudes into four regions: region D 
from 0"  to 70"; region B 70°-190"; regionA 190"-280"; region C 280"- 
360". 
regions B and C ,  and no peaks a r e  found in region D. 

The main peak appears in region A, subsidiary peaks appear in 
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central meridian longitude. Some polarization observations were 

carried out but they were not emphasized because of the more funda- 

mental nature of the histogram and rotation period studies. 

A partially polarized wave is completely specified by the total 

intensity I, the polarization fraction m, the axial ratio r, and the 

ellipse orientation x . l5 These quantities can be conviently represented 

in terms of the Stokes parameters which themselves are simply 

expressed in terms of circular components. With oppositely polar - 
ized circular antennas the parameters I, m, r, and x may be obtained 

by measuring right and left circular intensities and the cross -corre- 

lation and phase difference between them. 

ments measured only right and left circular intensities so that the 

polarization was not completely known. In fact, to obtain an estimate 

of the axial ratio the wave had to be assumed to be completely polar- 

ized. 

16 

Early polarization experi- 

17 In this case the axial ratio is given by 

L - R  r n -  
L t R  

where L and R are the amplitudes of the left and right circular com- 

ponent signals respectively. Signals polarized right-handed in the 

radio sense* have - 1 I r  CO and signals polarized left-handed have 

O<rSl .  

*A wave is right-handed polarized in the radio sense if the tip 
of the electric field vector rotates clockwise looking along the direction 
of propagation. 
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Up to 1961 all polarization measurements had been made close 

to 22 Mc/s, 7' 18' l9 except for a single observation at 19.6 Mc/s by 

Gardner and Shain. Since observers in both hemispheres reported 

predominantly right-handed polarization, the effect was presumably not 

due to the Earth's ionosphere. Polarization measurements at 18.3 and 

24.0 Mc/s were made in 1961 by Barrow. Reporting a smaller pro- 

portion of right-handed polarization at 18.3 than at 24.0 Mc/s, he 

suggested that the gyrofrequency on Jupiter might be determined simply 

20 

21 

from changes in polarization mode at different frequencies and urged 

that observations be made at several different frequencies. 

23 
The following year  CarrZ2 and Barrow observed a signifi- 

24 cant number of left-handed bursts at 16 Mc/s. Sherrill and Castles 

reported varying proportions of left-handed bursts at frequencies from 

15 to  24 Mc/s. D ~ w d e n ' s ~ ~  observations at 10.1 Mc/s indicated that a 

higher proportion of left-handed bursts appeared to be associated with 

System III longitude regions B and C rather than with regions A and D. 

Observations described in Chapter IV tend to confirm these findings. 

Up to this point axial ratios had been calculated on the 

assumption that the radiation is 100 per cent elliptically polarized. 

However, there a re  several other possibilities. For example, the 

radiation may consist of a pure circular component plus a random 

component. 26 Thus it becomes necessary to measure the random 

component to determine the degree of polarization and hence the axial 
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ratio. Dowden points out that this measurement is difficult to make, 

however, because Faraday rotation at decameter wavelengths is large 

and is both frequency and time dependent. I 

An attempt to measure the random component was made in 

1963 by Sherrill. 17' 27 Using a system in principle similar to the 

Cornell University polarimeter, '* Sherrill recorded right and left 

circular intensities and the cross -correlation product of their ampli- 

tudes. 

fraction and axial ratio. Sherill's results will be discussed in  Chapters 

U, V, and VII. 

These measurements permit the calculation of polarization 

The Florida State University Radio Observatory has recently 

set up a polarimeter system to measure all the parameters of polarb 

zation at 18 Mc/s. 

siderably better than that of the sys t em used by Sherrill. 

The overall time response of the system is con- 

This results 

in better statistics for the number of bursts in an event since the 

possibility exists that Sherrill's low chart speeds and relatively long 

time constant (1.0 second) smoothed several bursts into one. 

The amount of data obtained presents a formidable task in 

analysis. A typical Jupiter noise storm might produce 20 feet o r  more 

of record containing several hundreds of bursts. It will be the purpose 

*Further discussion of this problem is deferred until Chapter If. 
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of this thesis to investigate possible compromise methods of record 

analysis and to compare preliminary results with those of other workers. 

\ 



II. POLARIZATION MEASUREMENTS 

A. Theory 

According to theory, partly polarized radio waves can be 

uniquely represented as  the combination of a polarized part and an un- 

polarized part. The unpolarized component is specified by its intensity 

The polarized component is described by its intensity I , ellipse 

The sense of rotation is indicated by 

?lo e 

orientation x and axial ratio r. 

the sign of r, as in Chapter I. 

The four quantities I u# Ies x ,  and r completely specify the 

15 wave. The wave m a y  also be described by the Stokes parameters 

which a r e  given by: 

I = I  + I  e u  

43 I COS 2p- COS 2x e 

U = I cos 2p* sin 2x e 

V = I s in  2p e 

In terms of the Stokes parameters the polarization fraction 

m = I /I, axial ratio, orientation, and intensity may be found from: e 

I =  I 

2 2 2 1/2/1 m = ( Q  tu t V )  
(3) 

sin 2p = V/Ie, 

tan 2x = U/Q 

r = tan p 

9 
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The Stokes parameters have the advantage of being closely 

related to measurable quantities. In terms of circular components it 

can be shown that the Stokes parameters become: 
16 

I = I +IL R 
& = R  2 t I / 2  

I L = L  2 t I / 2  

Q = 2RL cos y 
U 

U = 2RL sin y 
U 

v=IL-jR 

(4) 

where L and R are the amplitudes of the left and right circular com- 

ponents of the polarized part  of the wave. Fig. 2 shows the circular 

components of a polarized signal. 

Using oppositely polarized circular antennas with an appro- 

priate receiver and proper mixing circuitry, four outputs may be 

the croes-correlation product R L, L' IR' calibrated to read precieely I 

and the phase +. 
become: 

With such a system the polarization parameters 

28 

2 1/2 
[ ( IL-  l2 t 4(R0 L) ] 

R 
m =  I +IL 

(5) 
'L - 'R 

2 2 1/2 r = tan P, sin 2p t 
[ (IL - IR) + 4(R * L) 3 



F i g .  2 - - C i r c u l a r  components of a r i g l ~ t  e l l i p -  
t i c a l l y  polari .zcd wave oriented at an ang le  x .  The 
wave i s  p r o p a g a t i n g  i n t o  the paper ,  
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Measurement of the cross-correlation product in addition to  

the right and left circular intensities permits recognition of a number 

of different modes of polarization which would be indistinguishable if 

oaly right and left circular intensities were measured. For  instance, 

random polarization and linear polarization look the same if the cross- 

correlation product is not measured. Similarly, pure elliptical polar - 
ization cannot be distinguished from the superposition of random and 

pure circular polarizations. Table 1 summarizes possible values of 

parameters of the wave for several types of polarization. 

B. Faraday Rotation 

In its passage through a homogeneous ionized medium in the 

presence of a magnetic field a partially polarized electromagnetic wave 

is split into two independent modes of propagation, each of which has 

a different phase velocity. 

modes a r e  circularly polarized with opposite senses of rotation unless 

the magnetic field is almost exactly transverse. 

If the frequency is sufficiently high, the two 

The axial ratio and 

sense of rotation of the total wave a re  not altered but the polarization 

ellipse is rotated. The Faraday rotation of the polarization ellipse is 

16 given by 

w = (2.36 x 10 )f OnBZde 
O 3  - 2 J  

where w is in radians, f is the frequency in megacycles, n is the number 

of electrons per cm , B is the longitudinal component of magnetic field 3 
z 
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16 in gauss, and 2: is the path length in kilometers. 

that the Faraday rotation at 20 Mc/s is greater than 340 radians, 

Cohen estimates 

Ideally, any model for the origin of the Jovian decameter 

radiation should predict the electron density and magnetic field of the 

magnetosphere and the height of the source region. 

the model should also be able to  predict the polarization of the radiation 

when it is emitted, Application of Equation 6 to the magnetoionic 

medium between the source region and the top of the Jovian magneto- 

sphere should give the orientation of the polarization ellipse at the top 

of the magnetosphere. In principle, Equation 6 could also be used to 

find the Faraday rotation for the passage of the radiation through the 

interplanetary medium and the Earth's ionosphere. Also, in principle 

the ellipse orientation at the antenna can be calculated. These calcu- 

lations might afford a check on the model. However, at the present 

time measurements of the ellipse orientation of the Jovian radiation are 

of little value since the magnetic field and the electron density in the 

interplanetary medium are not known with any certainty and the Faraday 

rotation due to the Earth's ionosphere can only be roughly estimated, 

To be complete 

Measurements of the other polarization parameters ehodd be 

more useful. These quantities measured at the antenna can be taken to 

describe the polarization at  Jupiter if the dispersion due to Faraday 

rotation can be neglected. The effect of dispersion on an elliptically 

polarized noise signal distributed uniformly through a frequency 
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spectrum is to  produce a continuum of polarization ellipses with a spread 

of orientations, Dispersion may arise either a t  the source or in the 

receiver. 

source. Radiation from the bottom laye r  of the source suffers a Faraday 

Dispersion at the source is due to the finite width of the 

rotation in its passage through the source. Thus each level of the source 

produces a different ellipse orientation so that at the top of the source 

the radiation appears to be par t ia l ly  polarized. This effect is small if 

the source region in the Jovian magnetosphere is small compared to  the 

radius of the magnetosphere. In any case there is nothing that can be 

done about it since it is due entirely to  the finite depth of the source. 

Dispersion in the receiver is due to the finite bandwidth of the 

receiver, From Equation 6 the angular dispersion rate is 

(7 1 d w  w - = - 2  - radians/cycle. 
df f 

If the bandwidth is small compared to the center frequency, then 

9 Af - 2: 2- 
w f 

where 8 is the dispersion in radians in the frequency band between 

f and f2 and Af = f2 - f l .  1 
16 

According to Cohen , the dispersion may be significant when- 

ever the product of Faraday rotation and relative receiver bandwidth is 

greater than half a radian for then 8 2 1 radian by Equation 8. Applying 

Equation 8 to the 18 Mc/s polarimeter at Florida State University using 

a bandwidth of 3.5 kc/e and Cohen's estimate of Faraday rotation at 
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20 Mc/s,  the Faraday dispersion is found to be about .17 radians. This 

is comfortably within the limit specified by Coben, so that dispersion in 

the receiver is probably not significant. 

It should be noted that Cohen's analysis assumes that the 

radiation is incident vertically, that is, that the zenith angle i is zero. 

The effect of a changing zenith angle may be accounted for by multiplying 

the right hand side of Equation 8 by sec i. It i e  easily seen that the 

zenith angle would have to be quite large for the dispersion in the 

receiver to be significant. 

The dispersion in the receiver could be decreased by reducing 

the bandwidth of the receiver, but this affects the relative power of the 

receiver noise 

where T is the 

fluctuations according to 

(9) 

time constant of the receiver. Thus to decrease the 

bandwidth of the receiver is to decrease the signal-to-noise ratio. A 

compromise value must therefore be adopted. 

C. Theories on the Jovian Decametric 
Radiation 

Present theoretical considerations of the decameter radiation 

sugg e s t s 11,29 from Jupiter favor two models. The theory of Warwiclc 

that forward-beamed Cerenkov radiation emitted at a frequency just 

below the plasma cyclotron frequency by particles precipitated from the 

Jovian Van Allen belts can explain the spectral data obtained with the 
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High Altitude Observatory 7.5-41 Mc/s  swept-frequency solar spectro- 

graph. The radiation escapes after reflection either within deme layers 

of the Jovian ionosphere or  at the surface of the planet. The radiation 

is only observed at the Earth for certain orientations of the assumed 

dipolar magnetic field and the planet's surface. 

After trial and er ror  Warwick found that the characteristic 

longitude profile and frequency drifts above 20 Mc/s can be explained 

by assuming the dipole to be inclined 9" to the rotational axis and located 

well to  the south of the equatorial plane. This result is subject to the 

restrictions that the electrons a r e  precipitated from the main radiation 

belt at two or three Jupiter radii from the surface and that the radiation 

is confined to within - t 10' of the field lines. 

According to Ellis", there are several difficulties in Warwick's 

theory, not the least of which is the requirement of a highly asymmetric 

dipole location, although this is substantiated to  some extent by the 

31 32 observations of Morris and Berge . Later observations by Berge , 

however, do not indicate that the field configurations required by either 

Warwick's theory o r  the Ellis and McCullough theory are present, 

although a small asymmetry is not ruled out. Also Cerenkov radiation 

in general is not emitted in  the direction of particle motion. Since the 

radiation is generated with a frequency just below the plasma cyclotron 

frequency, the decrease in  magnetic field as the radiation travels outward 

means it will have to pass through a magnetoionic stop region where the 
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wave frequency is equal to the cyclotron frequency. 

see how high attenuation can be avoided, since this region must not be 

very far above the generating region. 

It is difficult to  

The Doppler-shifted cyclotron theory of Ellis and 

is perhaps more plausible a s  it seeks to explain the 30,33 McCullough 

Jovian radiation in terms of known terrestrial  magnetospheric processes. 

The theory also makes predictions about the polarization of the radiation 

that can be tested experimentally. 

Ellis and McCullough point out that the radiation, either 

Cerenkov or cyclotron emission, must pass through a region of 

imaginary index of refraction if it is to escape. 

dence of the refractive index on frequency permits the forward-beamed 

radiation in the extraordinary mode to escape the source region, if it 

is Doppler-shifted to a frequency for which the index of refraction is 

real. 

However, the depen- 

The origin of the radiation is assumed to be cyclotron emission 

from magnetically disturbed electron streams near the boundary of the 

Jovian exosphere at high magnetic latitudes. After refraction the 

emerging radiation is mainly confined to the surface of a cone whose 

axis is the magnetic field line. The angular radius of the cone is given 

by Snell's law 

sin a = n. sin 6 (10) m 

where 6 is the angle between the wave normal and the magnetic field 
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vector and n is the index of refraction. The axial ratio is given by 

(11) ma r 3: 2 cos a 

33 
Fig. 3 shows the predicted distribution of axial ratios. 

Since the cone angle a depends strongly on the pitch angle of the m 

electrons, the peak of the distribution may be changed considerably by 

a small change in the magnetic latitude of the source region. 

It can also be shown from the theory that the summed axial 

ratio and the integrated power W a re  related to the number of bursts N 

by 

rtac Np (12) 

W cc Nq (13) 

where p = 1.05 and q = 1.3 from the initial assumption of the theory. 

Dowden found that observations at 10.1 Mc/s gave an axial 

ratio distribution similar in shape t o  the theoretical curve in Fig, 3, 

if it is assumed that apparent axial ratios below 0 .2  are produced by 

superposition of bursts with higher axial ratios but opposite senses of 

polarization. 

Fig. 4 shows the axial ra t io  distributions at 10. 1 Mc/s and also 

34 axial ratio distributions at 16 and 18 Mc/s  observed by Barrow. 

Dowden's observations also give a value of 1. 10 for p in 

Equation 12 and a value of 1.51 for q in Equation 13. The former value 

is in good agreement with the predicted value. The discrepancy in the 
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latter value could be accounted for by failing to allow for superposition 

of bursts. 

Sherrill assumed p 1.05 in Equation 12 and fitted this slope 

to his observations. However, his measurements gave axial ratio 

distributions which were peaked around 0.8 instead of at 0.3 as Fig. 3 

predicts. According to Ellis3*, this can be accounted for by assuming 

that the radiation is emitted at magnetic latitudes near 68" instead of 

between 75 and 80" as originally supposed. 

One interesting feature of the Ellis and McCullough theory is 

the use of a magnetic dip anomaly to explain the observed longitude 

profiles. 

phenomenon and the proposed anomalies do not appear to be excessive 

when compared with the terrestrial ones. 

The magnetic dip anomaly is a well-known terrestrial 

Another attractive feature of the theory is the possibility of an 

explanation of the observed dependence of the radiation on the orbital 

position of the satellite Io, Modifications of either electron streams in 

the Jovian magnetosphere or  the momentum distribution of electrons 

within the streams m a y  be caused by hydromagnetic or electromagnetic 

radiation from Io, Observations of the terrestrial  magnetosphere have 

shown that such radiation can stimulate emission of coherent radiation 

by a non-radiating particle stream. 

The theory has some difficulties when compared wi th  other 

features of the earth's magnetosphere. For instance, the scale height 
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of 2000 k m  found from predicted electron densities implies electron 

temperatures of 7500 degrees Kelvin in the lower Jovian magnetosphere 

as compared to 1000 to 2000 degrees Kelvin for the Earth. 

The Ellis and McCullough theory is by far the most fully 

developed of the theories of the decameter radiation. It appears to be 

the most attractive because of its use of mechanisms which are known 

to apply to the terrestrial magnetosphere. 



ILI. THE 18 MC/S POLARIMETER 

A. Instrumentation 

The antenna used for the 18 Mc/e polarimeter observations and 

its polar diagram are shown in Fig. 5. The antenna consist6 of two 

crossed five-element Yagi antennas alt-azimuthally mounted on a 35 

foot tower. The mounting permits up to eight hours of observation per 

night. According to the manufacturer's specifications the gain of the 

antenna is about 12.5 db for each polarization, probably an optimistic 

estimate. A more realistic figure is about 10.5 db with respect to a 

half-wave dipole. 

The antennas were fed through approximately 150 feet of 

RG-14AU transmission line (zo = 50 ohms) to  a conventional hybrid 

ring35 to simulate left and right circular camponents as shown in Fig. 

6. These components were fed to  a rack panel where receiver or 

calibrator connectione could be made. 

The RF outputs from the rack panel were fed to the polarimeter 

receiver.* Fig. 7 shows a schematic of the receiver. Receiver 

characteristics are listed in Table 2. An external noise source and a 

~ c u u m  tube voltmeter were used to balance the gains of the left and 

*Made to specification8 by Aeroepace Research, hc. 
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right hand sensitive channels, IL and 5 in Fig. 7, 

observing period. 

before each 

TABLE 2 

RECEIVER CHARACTERISTICS 

a Input impedance 

Center frequency 

Manual tuning 

Electronic sweep tuning 

Noise figure 

IF frequency 

IF bandwidth 

Time constant 

Audio frequency 
amplifier bandwidth 

75 ohms 

18 Mc/s 

- t 1/2% of center frequency 

- t 1/2% of center frequency 

6 db 

10.7 Mc/s 

3.5 or  15 kc/s, selectable 

0.1 or 1.0 second, selectable 

18 cls 

~~~ ~~~ 

a Changed to  50 ohms for 1966-1967 observations 

Signals from local oscillators at 28.700000 and 28.700340 Mc/s 

are mixed with the RF signal after amplification to produce the IFs of 

10.700000 and 10.700340 Mc/s. 

3.5 or  15 kc/s bandwidth filters at the IF amplifiers. 

puts from each of the IF amplifiers a r e  fed to a single product detector 

whose output is proportional to the product of the amplitudes of the I 

and 

correlation or correlator channel shown as the R . L channel in Fig. 7. 

The output of the R L channel is fed to a phase detector which produces 

The signals pass through selectable 

Part of the out- 

L 

channels, if the signals are coherent. This produces the cross- 
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a DC voltage proportional to the phase difference of the 

signals. 

and IL 

This is the 9 channel in Fig. 7. 

The four outputs from the receiver were fed to a Sanborn four 

channel DC thermal writing amplifier-recorder system capable of chart 

speed from 0.25 mm/sec to 100 mm/sec. 

adjusted if necessary before the obserat ion period to obtain a con- 

The zero position was 

venient background level. Observations were made with a chart speed 

of 2.5 or 5 mm/sec, a t ime constant of 0.1 second, and a bandwidth of 

3.5 kc/s, 

B. Calibration 

Two distinct calibration processes were necessary for the 18 

Mc /s polarimeter. The instrumental calibration was carried out before 

and during the watch to insure that the 5 and I 

matched. An external noise source was connected to the antenna inputs 

channels were gain L 

and the gain of the 

This had to be checked at the start of each watch as the match was un- 

stable over periods longer than several hours. 

channel was matched to that of the channel. IR 

The stability was 

improved considerably by leaving the equipment turned on between 

observations . 
A schematic of the polarization calibration system is shown in 

The outputs of the noise sources are fed to the antenna input Fig. 8. 

terminals of the receiver. Two independent crystal diode noise sources 

were used to simulate the unpolarized background radiation. The output 
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of a temperature saturated diode noise generator was divided equally by 

a commercial transformer hybrid to provide a coherent noise source 

which simulated completely polarized signals. The aeenuator could be 

placed in either side of the circuit to simulate various polarizations. 

Various cable lengths connected to  a coaxial switch could replace the 

attenuator in  the circuit. This also simulated various polarizations and 

phase differencee. The tube noise generator was fixed to  generate a 

given current and the corresponding deflection above background was 

recorded on the Sanborn recorder, This was done for a series of 

current values. 

A temperature saturated diode produces in the receiver a noise 

current in, the mean square value of which, in the frequency bandwidth 

Af, is given by 36 

i = 2eIAf (14) n 

where I is the diode current and e is electronic change. The power 

available from the diode is given by 
* 

in terms of the current in  the diode and 

(15) 

the load impedance R. 

The recorder deflection D above the background level is directly 

proportional to the output current of the detectors. The output current 

of the detectors is proportional to  some power t of the current in. 
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Therefor e 

.t In" iout oc D. 

Combining Equations 15 and 16 

It is easily seen that the relation between tube current I and recorder 

deflection D will have the form 

(18) 2 /t I = kD 

where t is the detector law and k is some constant. 

plotted on log-log graph paper, it has the form 

If the curve is 

(19) 
2 
t log I = - log(D) t log(k). 

Thus a Jupiter burst which produces a recorder deflection D m a y  be 

related to a tube current I by Equation 19. 

The advantage of this method is that t and k need not be known. 

A current corresponding to a particular deflection may simply be read 

off the log-log plot. 

calibration curves may be constructed by the method of least squares 

using the calibration points obtained a t  the end of each event. A typical 

set  of calibration curves is shown in Fig. 9 for the third event of 

January 28, 1966. The curve labelled A is tube current versus right 

hand channel recorder deflection; the B curve is current versus left 

hand channel deflection; The C curve is current versus correlator 

For  more precise calculations, however, the 
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channel deflection. 

which these curves were constructed, 

Fig. 10 shows the calibration of the record from 



u a 



IV. OBSERVATIONS 

Polarization observations were made at  Florida State University 

during the 1965-1966 apparition of Jupiter at 12.5, 16, 18, and 22 Mc/s. 

In addition to the measurement of the four Stokes parameters at 18 Mc/s  

the right and left circular components at 18 Mc/s were also recorded 

separately a s  part of the program of study of the Jovian I-pulses. 

Measurements of the right and left circular components of polarization 

were made at 12.5, 16, and 22 Mc/s. 

The polarimeter system for the measurement of the Stokes 

parameters had been described in Chapter IIL The antenna-receiver- 

37 recorder systems at the other frequencies have been described by Lee . 
Table 3 lists the periods during which the various frequencies were 

monitor ed. 

TABLE 3 

OBSERVATION PERIODS FOR VARIOUS FREQUENCIES 

Frequency 
~ ~ 

Period of Observation 

12.5 h/ic/s 

16 Mc/s 

18 Mc/s 

22 Mc/s 

February 12, 1966 to March 17, 1966 

November 21, 1965 to March 17, 1966 

December 6 ,  1965 to March 17, 1966 

November 21, 1966 to February 4, 1966 

36 
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Smoothed histograms of the polarization observations at 16 , 18, 

and 22 Mc/s are shown in Fig. 11. The right hand histograms contain 

all activity recorded on the right hand channels: the left hand histograms 

contain all activity recorded on the left hand channels. 

The most striking feature of these histograms is the difference 

between the relative height of the peak in region A in the left and right 

hand histograms. In the right hand histograms it is by far the highest 

but in  the left hand histograms it is about the same as the other peaks. 

Another interesting feature is the similarity of the left hand histograms, 

9,37 particularly the 16 Mc/s  histogram, to the I - p d ~ e  histogram 

shown in Fig. 12. 

1966 observations at Florida State. It contains only periods of activity 

The I-pulse histogram was constructed from 1965- 

during which I-pulses were recorded. 

Measurement of the Stokes parameters began December 6 ,  

1965. Unfortunately the final calibration procedure was not fully 

established until late January, 1966. As a result only five events 

recorded under suitable observing conditions have good calibrations . 
These are listed in Table 4. 

Chapter V. The events in  Table 4 were all recorded with a t ime con- 

stant of 0.1 second and a receiver bandwidth of 3.5 kc/s. The chart 

speed for the January 28th event w a s  2.5 mm/sec; for the other events 

Analysis of these events is carried out in  

the chart speed was 5 mm/sec. 



[--I I I *40t 
22 MC/S (ll/2l/65 to 2/4/66) 

L.H. 
.30 

-20 

. I  0 

)r 

a 
c .- - .- 
2 $lo 
2 a 
Q, .30 
2! 

18 Mc/s (12/6/65 to 3/17/66) 

0 
C 

0 5 20 
0" 

.to 
5 

E 
0 
0 

cn 
.40 

0 90 180 270 360 

Central Mzridien Longitude, System D l  (19570) 

F j . 9 .  lJ .--l i isto~rams of p o l a r i z a t i o n  
cbservations 1 9 6 5 - 6 6 ,  



LL 
0 
IO 

L31 
w 
m 

0 ALL EVEN 
I - P U L S E  

TS 
EVEN 

0 270 360 
LONGITUDE, SYSTEM 3E (1957.8) 



I 
I 
I 
I 
I 
I 

40 

The event of January 28th was the third event recorded that 

night. The first event at around 0300 U. T. was predominantly right- 

handed with a small amount of weak left-handed activity. A portion of 

this event is shown in Fig. 13a. 

4 because the chart speed was 1 mm/sec and the time constant was 1.0 

second. 

This event is not included in Table 

TABLE 4 

JUPITER EVENTS WHICH HAVE GOOD CALIBRATIONS 

Date Universal System 111 
Time Longitude Position 

January 28, 1966 0 539 -0 5 59 0-11 245-248 

February 23, 1966 0148-0 157 173- 178 262-263 

March 2, 1966 0138-0235 140 - 180 85-95 

March 16, 1966 0342-0422 160-185 70 -76 

March 17, 1966 0 153-0204 245-251 258-260 

The second event of January 28th occurred near 0430 U. T. 

and consisted entirely of widely separated and weak right-handed 

bursts. It is interesting to note that at this time a strong I-pulse event 

was being recorded at 14 and 16 Mc/s.  

The I-pulse event at 14 Mc/s appeared to continue well past 

the beginning of the third event at 18 M c / s  event though by this time 

Jupiter was well beyond the half-power points of the beam pattern of the 

14 MC/S array. A t  18 Mc/s the event was predominantly left-handed 
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throughout; at the beginning there was considerable strongly correlated 

right-handed activity, shown in Fig. 14a. Fig. 14b shows the right- 

handed activity having died away nearly completely within a few minutes. 

Predominantly left-handed activity was recorded again on 

February 23rd. Part of this event ia shown in Fig. 15b. Earlier on 

this date, around 0100 U, T., a weak, completely left-handed event was 

recorded and is shown in Fig, 1%. 

The events of March Znd, 16th, and 17th were all predominantly 

right-handed events. Fig. 13b shows a segment of the March 2nd record 

and is typical of all three events. There were some weak uncorrelated 

left-handed bursts mixed in with the right-handed activity on March 2nd. 



..... . . . . ,  

. . : . .  . . . . .  

. . . . . . .  .- 



a 
k 
0 
0 
0) 
k 

a 
k 
m 
CJ 

t 

I 
I 1 
i -1 

I 

i j r  



V. ANALYSIS OF RECORDS 

Discussion of earlier polarization observations (Dowden at 

10.1 Mc/s,  Sherrill at frequencies between 15 and 24 Mc/s,  and Barrow 

at 16 and 18 Mc/s) must include consideration of the overall time 

characteristics of the respective polarimeter systems. 

reported by Dowden consisted of 35 mm film of two parameters of 

polarization taken at six inches per hour. Sherrill's observations were 

The observations 

made with a time constant of 1.0 second and a recorder speed of 0.2 

mrn/sec. Barrow's recorder speed was 2 mm/sec with a time constant 

of about 0.1 second, but he too recorded only two parameters of 

polarization. 

The effect of recording speeds likethose usedby Dowdenand 

Sherrill is to compress small time intervals into small distances on the 

record of the event. Thus at 0.2 mm/sec one millimeter equals five 

seconds, The segments of records ShowninFigs. 13-15 contain several 

groups of three or more bursts occurring within a five second interval. 

It would be difficult to resolve these bursts using a chart speed of 0.2 

mm/sec, even with a time constant as short as 0.1 second. 

The possibility of superposition of bursts in Dowden's and 

Sherrill's records could introduce e r rors  in the assessment of burst 

characteristics. For example, a comparison of the dependence of 

45 . 
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summed axial ratio and integrated power on number of bursts as pre- 

dicted by the Ellis and McCullough theory with the observed dependence 

could contain systematic counting errors. 

The chart speeds of the Jupiter events listed in Table 4, 

together with the receiver time constant of 0.1 second, permitted the 

resolution of adjacent bursts if their peaks were separated by 0.4 

second. 

bability that several bursts may be superposed, if the bursts are not 

I-pulses. Thus great improvement of the statistics for an individual 

event is possible. 

The improved burst resolution reduces considerably the pro- 

However, an increase in number of bursts per event produces 

a corresponding increase in time required for analysis of the event. 

Tables 4 and 5 show that a large number of bursts may occur in a period 

of a few minutes. A method of analysis of the records which reduces 

the number of data points per event yet retains the main features of a 

burst analysis would permit more rapid analysis of large numbers of 

Jupiter events. 

of bursts, but the time characteristics of the polarimeter system would 

permit the improvement of statistics if so desired. 

This method would results in an artificial superposition 

Development of such a method necessarily entails analysis of 

some records at short time intervals to provide a standard of compari- 

son. The interval 

chosen was 0.4 second, or  one millimeter on the record of the January 

This has been done for each event listed in Table 5. 
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28th event and two millimeters on the records of the other events. 

Axial ratio and polarization fraction were computed according to 

Equations 5 for each point whose deflection on either the 5 or  the 

channel w a s  greater than the larger of five millimeters or three times 

the rms system noise criterion mentioned in  Chapter I. 

r m s  system noise criterion was a weaker restriction for all the events 

except that of January 28th. The five millimeter restriction was imposed 

since the e r ror  analysis of Chapter VI showed that calculation for points 

with deflections on both the circular component channels less than five 

millimeters above the background level could be highly inaccurate. 

Block diagrams of the distribution of values of axial ratio and polari- 

The three times 

zation fraction were then compiled for the complete set of points in this 

analysis. 

TABLE 5 

NUMBER OF POINTS IN EACH ANALYSIS OF EACH EVENT 

~-~ ~ ~- ~ 

Event Burst 0.4 Sec. 2.0 Sec. 6.0 Sec. 
~ ~~ ~ - 

January 28, 1966 256 1376 347 139 

February 23, 1966 169 249 99 41 

March 2, 1966 1011 1836 642 309 

March 16, 1966 184 256 105 58 

March 17, 1966 294 30 1 109 50 



48 

A less detailed analysis was made by selecting in each 2,O 

second interval the point with the largest deflection on either of the 

circular component channels. 

points comprising the 0,4 second analysis and was also subject to the 

minimum deflection above background level criterion discussed above. 

Calculation of polarization fraction and axial ratio for each point thus 

obtained permitted the conetruction of block diagrams of the distribution 

of values of these quantities for this set of data points. Similarly, 

distributions of axial ratio and polarization fraction were obtained using 

6,O second intervals. 

The selection was made from the set of 

Finally, axial ratio and polarization fraction were computed 

for the peak of each burst, again subject to  the requirement that each 

peak be at least five millimeters or three times the rms system noise 

above the background level on either of the circular component channels. 

Two bursts were considered t o  be resolved if their peaks were separated 

by 0.4  second or more. Block diagrams of the distribution of values of 

axial ratio and polarization fraction were drawn for this set of points. 

Figs. 16-20 compare the four distributions for each event. 

Reading from the top downward, the distributions are for the burst peak, 

0.4 second, 2,O second, and 6.0 second analyses respectively. Each 

distribution is plotted for 0.1 intervals of axial ratio r and polarization 

fraction m and has been normalized by dividing the number of points in 
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each interval by the total number of points contained in the distribution. 

Table 5 lists the number of points for  each analysis for each event. 

The drawings indicate that for each event the distributions a r e  

roughly the same although the 60 0 second analysis tends to obscure the 

main features of the distributions, 

interm1 analysis seem to contain most of the features of both the burst 

peak and 0.4 second interval analyses. For every event except the 

January 28th event the 2.0 second analyses contain fewer points than do 

the burst analyses. Thus it seems reasonable that future events may be 

analyzed by a method similar t o  the 2.0 second analysis and still retain 

much of the detail and the statistics awtilable with the burst peak studies. 

The distributions for the 2.0 second 

One interesting feature of the diagrams is that about 50% of the 

bursts consisted of a pure circular component plus a random component 

( 1 rl = 1 and m < 1). Other investigators have also observed that a large 

proportion of bursts seem to have I r 1 1. Since widely differing 

systems were used it seems clear that this is not an instrumental 

effect. It is tempting to speculate that perhaps two distinct mechanisms 

produce the elliptical bursts and the circular bursts. 

no additional support for this position. 

There is, however, 



VI, ERROR ANALYSIS 

It is desirable to put an estimate on the limits of accuracy of 

the polarization measurements. From Equations 5 we have: 

I 

IL - Tc 
e I r = tan f3, s i n  2 p = 

and 5 a re  the currents obtained from the corresponding IL* . L  where b, 
calibration curves. Using various trigonometric identities , the axial 

ratio becomes, neglecting the sense of rotation, 

IrC = 

We may consider m and 

r* 'L, =L, e 

r to be functions of the three I 1  
and I being a notational convenience. variables I 

According to the principle of superposition of errors38, the 

e r r o r  in a quantity Q wMch is a function of three variables X, Y, and 

2 is given by: 

A Q & - ( A X ) t -  aQ (AY)  t E a Q  (AZ) (22) 
a x  3 Y  

55 
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where AX, Aye and A Z a r e  the errors in X, Y, and 2. If the e r rors  

in the variables a r e  independent then the most probable value of AQ is 

given by: 

are independent, then the 5 s  IL' and IR L If the measurements of 

most probable values of A m  and Ar are given by: 

A m  

are given by: Re L .  where the currents IR, ILB and I 

D is the recorder deflection above the background level on the jth 
j 
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recorder channel and a .  and b. are the constants obtained from the 

least -squares construction of the jth calibration curve. 
J J 

In order to determine whether the e r rors  in the currents are 

independent and hence whether Equations 24 and 25 are applicable it is 

necessary to  investigate the sources of error. 

introduced into the calculations of the durrents by two separate processes 

Uncertainties are 

involved in the conversion of recorder deflections to currents. The 

first process is the construction of the calibration curves. 

were constructed by the method of least squares which has the advantage 

of providing a statistical estimate of the uncertainty of calculations made 

The curves 

from the curve due to  the scattering of points about the curve. 

The electronics of the antenna-receiver-recorder system 

guarantees the independence of the and I channels; therefore the 

statistical e r rors  in constructing the calibration curves for these two 

5 L 

channels are also independent. Furthermore, since the . channel 

mezsures only the product of the amplitudes of the coherent part8 of the 

and I signals and since the calibration curve is constructed in- 

dependently of the curves for the other two channels, the statistical 

e r r o r  is independent of the other two channels. 

L 

The second process is the determination of D. in Equation 26 
J 

from the record. 

the background level must be estimated and the recorder deflection must 

be read from the base line of the chart. 

Since D. is the deflection above the background level, 
J 
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Recorder deflections were read to the nearest half millimeter; 

thus the deflections are at worst accurate to + 5 mm. Estimating the 

background level was more difficult since fluctuations in the apparent 

- 

background level were sometimes as much as six millimeters wide on 

the 

noise rather than by weak Jupiter radiation, the background level can 

and 5, channels. If these fluctuations are caused by instrumental 

be estiamted by measuring the average maximum deflection and the 

average minimum deflection during a portion of the record when no 

identifiable Jupiter emission w a s  present. Taking the background level 

equal to  the average of these numbers located the background level to 

within - + 5 mrn. 

analyzed in Chapter V. 

This procedure w a s  followed for the five events 

It was found during calibration tests that a change in the 

simulated background level of as much as one millimeter produced no 

apparent change in the deflection above the background due to a given 

current. Therefore the background level, if noise fluctuations are not 

due to weak Jupiter radiation, is for practical purposes located 

precisely and the D. in Equation 26 was taken to be accurate to - + . 5  mm. 
J 

Since deflections on different channels were measured sepa - 
rately, the e r ror  due to measuring the deflections on one channel is 

independent of the e r ror  due to  measuring the deflection on another 

channel. Thus all the e r rors  are independent and Equations 24 and 25 

are applicable. 
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In Equations 24 and 25 the quantities AI. occur. These 
J 

quantities are best estimated by calculating the quantities: 

I = exp(a Ln(D.+ 0.5) t b.t c.), j = R, L, R o L  (27) 
jf j 3- J-  J 

where c. is the statistical inaccuracy due to the scatter of the calibration 

points for the jth curve. Then 
J 

The quantitiea I represent the extreme values which I. may take on. 
ji: J 

Hence A& is the rnaxun * urn er ror  i n  the variable I.. 
J J 

When AI. is actually computed the fact that the logarithm 
J 

function is not finite at zero must be considered. This becomes 

important when D I 0 .5  mm. If this happened I. was arbitrarily set 

was zero, this had a particularly pronounced equal to zero. When IR 

effect on r. If Equations 21 and 22 are  examined, it is seen that when 

j J 

. L  

= 0 ,  r = 1 from Equation 20 and thus I R .  L 

zAr,* L 
' L - I R  

Ar = 

Now AIR . is not equal to  zero in general and in some cases 

it may be quite large, particularly on March 2nd, 16th, and 17th where 

calibration of the records showed that a noise current of about 50 

milliamps was required to give a deflection of about 0 . 5  mm above the 

background level on the correlator channel. Thus from Equations 24 

and 25, AIR. 2: 50 ma, These points represent pure circular plus 

random polarization of the radiation since r = 1 and comprise about 50% 
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an increase in the noise current produced only 

60 

of the points of the analysis. Using the events of March Znd, 16th, and 

17th as examples IL - I 
Ar > 1/2. 

C 200 ma for most of these points and hence R 

As a result the average Ar for the whole event can be quite 

high. It can be reduced somewhat by increasing the minimum deflection 

a point must have to be included in an analysis of a particular event. 

This was done for various minimum deflections using the initial burst 

analysis as a basis. Table 6 shows the results of this study for each 

event. 

It is seen from Table 6 that the average value of A r  decreases 

steadily as a higher minimum deflection is required. Also the average 

value of A m  decreases in this way except for the event of March 2nd. 

Calculations of m values for this event revealed that for strongly 

correlated bursts the m values were greater than 1. 

calibration points for the I,, channel indicated that above about 60 ma 

Examination of the 

a small increase in 

deflection whereas a similar increase in noise 

comparatively larger increase in deflection on 

current produced a 

the I channel. This L 

results in  a flatter slope for the I channel calibration curve and 

comparatively smaller currents for high deflections than on the I 

channel. 

simulate the background level on the I 

time. 

R 

This might be accounted for i f  the diode noise source used to  

channel began to fail at this R 

Unfortunately this could not be checked because by the time this 
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event had been analyzed the calibration sys tem then in use had been 

abandoned for a better one. There is no evidence, however, that this 

was the case. 

Since there were practically no noise fluctuations on the 

= 0 whenever R *  L correlator channel, it seems reasonable to s a y  that AI 

S O .  For this case Ar = 0. Table 7 shows and =calculated IW* L 

for each analysis for each event based on this assumption. 

During each of the five events analyzed there were small- 

amplitude signal fluctuations on the I 

event. They were also found on the correlator channel during the 

and IL channels throughout the R 

January 28th and February 23rd events and were originally attributed to 

system noise. However, if these fluctuations were due partially to 

Jupiter radiation then large systematic e r rors  would be introduced into 

calculations of m and r and would not be reflected in calculations of 

e r ro r  according to Equations 24 and 25. 

Since the fluctuations were considered to be system noise, the 

background level was taken to  be the mean of the fluctuations. If the 

fluctuations were partially of Jovian origin, however, then the back- 

ground level used for calculations is too high, and hence the currents 

are too low. If the fluctuations of Jovian origin were linearly polarized, 

then the polarization fractions a r e  too small and the axial ratios are 

too high. It is unlikely that the fluctuations represent linearly polarized 

Jupiter radiation, however, since linearly polarized Jupiter radiation 
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has been observed only rarely and since for three events there were no 

fluctuations on the cor r elator channel. 

It is more likely that the fluctuations, if truly Jovian in origin, 

represent random, circular, or elliptical polarizations. In the case of 

random polarizations the calculated polarization fractions would be 

systematically high. In the case of circular polarizations the calculated 

polarization fractions would be systematically low. In neither of the 

two cases would the axial ratio be affected. 

The size of the fluctuations varied considerably from event to 

event (see Figs. 13-15). 

event and were about six millimeters wide. For  the February 23rd 

event the width of the fluctuations was about three millimeters and for 

the remaining events w a s  about 1-1. 5 millimeters. 

The largest occurred during the January 28th 

The obvious procedure to resolve this problem would be to  

extend the record of the event to a point when Jupiter is well out of the 

reception pattern of the antenna and compare the noise levels of th is  

portion of the record to the noise level during the activity period. Un- 

fortunately, it was not realized that this could be a problem until some 

time after the events. The records of the events indicate, however, 

that the fluctuations are instrumental since quite long periods of time 

during the event contain no identifiable Jupiter activity. 

ations during these periods a r e  just a s  large as the fluctuations during 

periods when activity is present. 

The fluctu- 



VII. DISCUSSION AND CONCLUSIONS 

Figs. 16-20 and Tables 5 and 7 together indicate that within 

the limits of accuracy of the experiment the 2 .0  second interval analysis 

is a s  good as the burst peak analysis for events in which the only 

circularly or elliptically polarized points a r e  either all right-handed 

or  all left-handed. Analysis of the March 2nd event indicates that this 

is also true of events containing both kinds of polarization. About three 

per cent of the points in the analyses of the March 2nd event are left 

circularly or left elliptically polarized; the remainder are right -handed 

polarized. 

The axial ratio and polarization fraction distributions are 

essentially the same as observed by Dowden, Sherrill, and Barrow. 

Each of these observers reported a peak in the axial ratio distributions 

corresponding to pure left or right circularly polarized bursts ()r I = 1) 

containing a substantial number of the points used to construct the 

distributions. It is tempting to  speculate that elliptically polarized 

bursts have a different origin than circularly polarized bursts but there 

is no justification for such speculation. 

If the circularly polarized bursts are removed from the dis- 

tributions, the distributions have a shape similar to that predicted by 

65 
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the Ellis and McCullough theory although they do not fall off as sharply 

as predicted for values of 1 r t  smaller than the peak value. Dowden 

observed the same effect and commented that it could be explained by 

superposition of bursts of opposite sense of polarization. However, the 

discussion of the time characteristics in Chapter V indicates that super- 

position is not as serious a problem with the present records. 

The effect might be accounted for by crosstalk between the 

circular component channels. The crosstalk would produce a deflection 

on the correlator channel because coherent signals would be detected by 

the product mixer in the receiver. However, i f  crosstalk is present 

nearly every burst would appear to be elliptical rather than circular, 

Furthermore, noise generator tests revealed that there is little or no 

crosstalk with this polarimeter since simulation of randomly polarized 

signals with independent noise sources did not change the correlator 

channel deflection detectably. 

According to Ellis and McCullough the location of the peak of 

the axial ratio distributions for elliptical polarizations is determined by 

the magnetic latitude of the source region. 

spread over a range of magnetic latitudes the effect would be to broaden 

and t o  smooth the peak. 

If the source region were 

The combined distributions of the five events shown in Fig. 2 1  

represent 1914 bursts detected in an observing time of about 20 hours. 

As a comparison Sherrill reported 1677 bursts in an observing time of 
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48.6 hours. 

zation fraction and axial ratio distributions. According to Table 5 the 

distributions for three of the five events analyzed here a re  as good as 

or better statistically than Shcrrill's distributions for a complete 

observing season and the remaining two a re  nearly as g o d ,  

Only about 250 of these were used to construct his polari- 

Fig. 21 indicates that about 80% of the bursts had a polari- 

zation fraction of 0.70 or more. 

18 Mc/s bursts had a polarization fraction of .80 or more. 

perhaps be regarded a s  some justification for the assumption that 

Sherrill found that about 9570 of his 

This may 

m = 1.0 made by those observkrs who recorded only two parameters of 

polarization. 

Various attempts have been made to test  the dependence of 

summed axial ratio on total burst number predicted by the Ellis and 

McCullough theory. Dowden, Sherrill, and Barrow have tested this 

prediction by summing the axial ratios of bursts in a given Jovian 

longitude interval. The summed axial ratio per central meridian 

longitude region w a s  plotted against the total number of bursts occurring 

in that region. 

Ellis and McCullough theory within the limits of accuracy of the obser - 
vations. In order to obtain sufficient burst numbers it was necessary for 

these observers to use large longitude intervals and the observations for 

a complete observing season. For this reason only a limited number of 

These observers obtained results consistent with the 
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data points per observing season were available to  construct the curve 

of observed dependence. 

The time characteristics of the Florida State University polar- 

imeter make it possible for each event to become a data point because 

of the larger number of distinguishable bursts per event. Consequently, 

in a normal observing period a significantly larger number of data points 

is available. If the method of least squares is used to determine the 

slope of the observed dependence of summed axial ratio on burst number, 

the possibility exists of a considerable increase in accuracy of the 

observed dependence because the statistical uncertainty decreases as 

the number of data points increases. 

The five events listed i n  Table 4 have each been used as a data 

point in a log-log plot of 1 1.1 versus total burst number N. This is 

shown in Fig. 22. 

by the method of least squares. 

The slope of the curve is 0.98 - t 0.10 and was obtained 

No vertical error  bars are shown in Fig. 22. I€ error  bars 

are calculated according to Table 6 for a minimum deflection of five 

millimeters for the burst analyses, they are found to be very large. For 

example, for the event of January 28th 

the event of March 17th, 

represented by the two points in Fig. 22 which do not fall close to the 

calculated curve. 

they a r e  found to be so small that for the points for the January 28th and 

xirl = 149.3 - t 101.2 and for 

Ctrj = 235.3 - t 182.0. These events a re  

If e r ror  bars a re  calculated according to Table 7, 
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March 17th events the error bars would not fall on the curve as drawn, 

even if the error  in calculating the slope of the curve is considered. 

The emallest average error  which would permit these 

points to fall on the curve is about 10% for each. According to Table 6 

the largest possible minimum deflection which would give this amount 

of error  ie  between 15.0 and 20.0 mm for the January 28th event and 

more than 20.0 mm for the March 17th event. If this criterion is applied 

to each event, the minimum deflections which could be adopted for each 

event without allowing the average error to become too large are 1 5 0  

mm for the January 28th event, 7.5 mm for the February 23rd event, 

15.0 mm for the March 2nd event, 10.0 mm for the March 16th event, 

and 20.0 mm for the March 17th event. 

The analysis of Chapter VI which led to  the production of Table 

6 indicated that the very large errors in axial ratio calculations were 

due to  the fact that large currents sometimes produced only a small 

deflection on the correlator channel, This is because there is a thres- 

hold current below which the polarimeter receiver does not work 

properly. 

deflection of 0.5 mm on the correlator channel on February 23rd, about 

25.0 m a  on January 28th, and about 50.0 ma on March 2nd, 16th, and 

17th. 

Thus a current of about 8.0 ma was necessary to cause a 

On this basis it is possible to make a preliminary estimate of 

the minimum deflection which should be chosen for each event. Thus if  
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a small current produces a detectable deflection on the correlator 

channel, the analysis should begin with a small minimum deflection 

such as five millimeters. If it requires a larger current to produce a 

detectable deflection on the correlator channel, the analysis should begin 

with a larger minimum deflection. 

The foregoing discussion suggests that future observations with 

the Florida State University polarimeter be made with these points in 

mind: 

1. Analysis of each event which does not contain I-pulses by means 
of the 2.0 second interval method of analysis. 

2. Inclusion in an analysis of an event of only those points with a 
sufficiently high deflection on at least one circular component channel. 
(With the Florida State polarimeter system one circular component 
channel should have a deflection greater than the larger of five milli- 
meters or three times the rms system noise.) 

3. Testing the dependence of summed axial ratio on burst number 
predicted by the Ellis and McCullough theory with a large number of 
events . 

4. Development of a method for testing the dependence of integrated 
power on number of bursts predicted by the Ellis and WcCullough theory. 

5. Development of a simpler calibration system. Such a system 
was establi~hed for use during the 1966-1967 apparition of Jupiter. With 
it the crystal diode noise sources are dispensed with and the signal from 
the tube noise generator is superimposed over the galactic background 
at the end of each event. This simplifies the calibration greatly. 
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